Photo-initiated Cationic Polymerization of Sustainable Epoxy Materials

Zheqin “Theodore” Yang
Graduate Student
Department of Chemistry and Chemical Biology
Rensselaer Polytechnic Institute, Troy, NY, USA

James V. Crivello and Chang Y. Ryu

National Science Foundation
Applications of Epoxy

Motivation

Develop green and sustainable alternatives to the highly polluting and energy-intensive epoxy resin chemistry.

1. Substrates should be readily available in substantial quantities with minimum chemical modification.

2. Polymerization reaction should be rapid, energy efficient and solvent-free.
Approach

Vegetable oils
Ester-based Monomer Source with Unsaturated Bonds (Triglycerides with unsaturated fat)

- **Soybean oil**
- **Linseed oil**

![Chemical structures of soybean and linseed oils](image)
Epoxidation by Phase Transfer Catalyst

- No byproduct other than water
- High conversion (>60%)
- Easy workup

Photo-initiated Cationic Polymerization

\[
\text{MtX}_n^+ \quad \text{Diarylodonium salts}
\]

\[
\text{MtX}_n^- \quad \text{Triarylsulfonium salts}
\]

\[
\text{Ar}_2\text{I}^+ \text{MtX}_n^- \xrightarrow{\text{hv}} \text{Ar}^+ \text{MtX}_n^- + \text{Ar}.
\]

\[
\text{H-donor} \quad \text{Ar}^+ \text{MtX}_n^- + \text{ArI} \rightarrow \text{HMtX}_n
\]

\[
\text{MtX}_n^- = \text{SbF}_6^-, \text{PF}_6^-, \text{AsF}_6^-, \text{BF}_4^-, (\text{C}_6\text{F}_5)_4\text{F}_6^- \text{ etc}
\]

Drawbacks to Epoxidized Vegetable Oils as Monomers

- Low glass transition temperatures limit use to non-structural applications
- Relatively slow photopolymerization rates

Photoinitiator:

![Chemical structure of Photoinitiator]

Epoxidized linseed oil (ELO) $T_g = 50 \, ^\circ C$

Epoxidized soybean oil (ESO)

![Graph showing temperature change over irradiation time]

Optical Pyrometry Apparatus
Butadiene-based comonomer

- Cyclohexene, 4-ethenyl
- 1,5-cyclooctadiene
- 1,3-Butadiene
- Cyclohexane, 1,2,4-triethenyl-
- 1,5,9-cyclododecatriene
- Poly-butadiene
Photoinitiator:

Light Intensity:

2354 mJ/cm2/min

100 wt% CODD

CODD:

- 100 wt% CODD

- 2 wt% Photoinitiator:

- Light Intensity:
 - 2354 mJ/cm2/min
- **Photoinitiator:**
 \[
 \text{CODD:} \quad \text{O} \quad \text{O}
 \]

 \[
 \begin{align*}
 \text{Photoinitiator:} & \quad \text{C}_{6}H_{8} \quad \text{O}_{8}H_{17} \\
 & \quad 2 \text{ wt}\% \\
 \text{Light Intensity:} & \quad 2354 \text{ mJ/cm}^{2}\text{min}
 \end{align*}
 \]

- **Temperature (°C):**

- **Irradiation Time (s):**

- **Sample Compositions:**
 - 100 wt% CODD
 - 70 wt% ELO 30 wt% CODD
 - 80 wt% ELO 20 wt% CODD
 - 90 wt% ELO 10 wt% CODD
 - 95 wt% ELO 5 wt% CODD
 - 100 wt% ELO
100% wt TVCHT

- Photoinitiator:
 \[
 \text{Phenyl}^4 \text{C}_{4}H_{4}^{+} \text{C}_{17}H_{35}^{8-bF_{6}}^{-}
 \]
 2 wt%

- Light Intensity:
 2354 mJ/cm²/min

Temperature (°C)

- 100 wt% ELO
- 80 wt% ELO 20 wt% TVCHT
- 60 wt% ELO 40 wt% TVCHT

Irradiation time (s)
• Photoinitiator:

\[
\text{C}_{6}H_{17}^\text{O} \quad \text{(2 wt%)}
\]

• Light Intensity:

2354 mJ/cm² min

- 100 wt% CODD
- 100% wt TVCHT
- 60 wt% ELO 40 wt% TVCHT
- 80 wt% ELO 20 wt% TVCHT
- 100 wt% ELO
$T_{\text{substrate}} = 90 \, ^\circ \text{C}$

Sample: 100%

Threshold temperature of autoacceleration

Photoinitiator:

Light Intensity:
- 2354 mJ/cm2min
- 2 wt%
<table>
<thead>
<tr>
<th>Monomer</th>
<th>Temperature (°C)</th>
<th>Viscosity (Pa•S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TVCHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.248</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.0327</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>0.0106</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>0.00510</td>
</tr>
<tr>
<td>CODD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.0288</td>
</tr>
<tr>
<td>ELO</td>
<td></td>
<td>2.10</td>
</tr>
</tbody>
</table>
Glass transition Temp (°C)

VCHD:

Glass transition Temp (°C) vs. VCHD content (wt%)

* Error bar using t test (95%)

VCHD:

- Photoinitiator: ![Chemical Structure]
- Light intensity: 3336 mJ/cm² min
- Irradiation time: 15s
- Sample Thickness: 100-120 µm
- Samples were postbaked at 80°C for 2h

100% ELO
90 wt% ELO / 10 wt% VCHD
80 wt% ELO / 20 wt% VCHD
70 wt% ELO / 30 wt% VCHD
Conclusions

- Unsaturated vegetable oils can be epoxidized and polymerized into epoxy thermoset. However, their reactivity and thermal properties need to be improved. (e.g. Tg (ELO) = 50 °C)

- Butadiene-based epoxy comonomers show a good enhancement of reactivity and glass transition temperature (Tg to 110°C for a blend of 70 wt.% ELO/30 wt% VCHD, for example).

- A critical threshold temperature (~80°C) exists for autoacceleration of photopolymerization of trivinyl cyclohexane triepoxide (TVCHT) and viscosity plays an important role in control the induction period.
Acknowledgements

- Crivello/Ryu Research Group
- RPI polymer center community