In Situ Study of Pit Initiation on Aluminum

Ainsley Pinkowitz
Graduate Student

Department of Materials Science and Engineering
Rensselaer Polytechnic Institute, Troy, NY, USA

Advisors: Dr. David Duquette and Dr. Robert Hull

Collaborators: S. Chee, S. Straub, B. Engler

Sponsored by NSF: NSF-DMR 1309509

2014 Rensselaer Nanotechnology Center Research Symposium
Wednesday, October 29, 2014
Background

- Aluminum is a passivating metal
 - Builds up a thin, tightly bound oxide film
- Passive films give good natural corrosion resistance
- The films are subject to attack
 - Total dissolution
 - Localized corrosion
Localized Corrosion

• Pitting, crevice, occluded geometry corrosion, or de-alloying.

• Growth mechanisms are well understood
 – Breakdown in oxide film leaves local area of more active potential
 – Increase in metal cations from anodic reaction
 – Cl⁻ ions flock to the region for charge neutrality
 – Presence of the Cl⁻ encourages hydrolysis to form a metal-hydroxide compound, and H⁺.
 – The now-acidic environment accelerates and stabilizes the process.

• Initiation mechanisms are not.
Initiation

- Best accepted theories:
 - Penetration
 - Adsorption
 - Film breaking

Observing the mechanism

• Until now, no tool existed capable of visualizing the initiation of a pit.
• Liquid cell holder allows a nano-scale corrosion experiment inside the TEM.
• Features a channel for flow and three electrodes for biasing.
Goals of in situ technique

• Al oxide film in solution is hydrated, and is modified by being dehydrated.
• TEM provides the resolution to observe pits at the instant of initiation.
• Much of the literature looks at stable pits, but metastable pits form and heal at lower potentials.
TEM resolution

Left: Al film under 250nm of fluid, at the corner of the viewing window.
Right: Al film dry

Al before (a) and after (b) 2 days exposure to vapor in the fluid cell (c) under 500nm fluid
Preliminary results

- Work is being done on the macroscale to establish conditions for pitting on the nanoscale
- Study on pitting potential as solutions become more dilute
Preliminary Results

• Work in TEM currently focused on expanding corrosion region, removing galvanic effects

Above: portions of the sample chip after linear potential sweeps. On left: chip with Ti deposited under the Al at the contact.
Future work

• Studies in the TEM will try to correlate pits to structural information
 – Grain boundaries, dislocations, stacking faults etc.
• EDS, EELS useful for correlating pits to local chemical makeup
• Varying conditions will be used to grow oxide films
 – Films’ reactions to being hydrated will be observed.
Acknowledgements

• Dr. See Wee Chee, for training on the Hummingbird microfluidic holder, and many of the images and early experimental data.

• Ray Dove, for abundant help in all things electron microscopy

• Drs. Duquette and Hull for advice and guidance

• Brent Engler, Sarah Straub, and Colm Grant for assistance with experimental set-up and sample preparation.

• NSF for funding the study
 — Grant #NSF-DMR 1309509