Scanning Hot Probe Method for Measuring Seebeck Coefficient and Thermal Conductivity of Novel Nano-Structured Materials and Films

Adam A. Wilson
PhD Student

Department of Mechanical, Aerospace and Nuclear Engineering
Rensselaer Polytechnic Institute, Troy, NY, USA

Prof. Theodorian Borca-Tasciuc, Advisor

Collaborators: Institute of Microelectronics Madrid, Jason Schomacker

Sponsor: National Science Foundation
Outline

• Motivation
• Principle of Method/Data Reduction Strategies
• Current Work/Observations/Results
• Challenges/Future Work
Motivation

- Renewed excitement over thermoelectric materials
- Applications?
Motivation (cont’d)

- \[ZT = \frac{\sigma S^2}{\kappa} T \]
- Improvements by \(\sigma \uparrow, S \uparrow, \kappa \downarrow \)
- How to decrease \(\kappa \)?
Motivation (cont’d)

• Characterization is challenging!
• Need fine resolution of local characterization
• How?

Scanning Hot Probe!
Principle of Method

• Thermal AFM tip heated via Joule heating.
 – Acts as Heat Source, Temperature Gauge and Seebeck Voltage Probe

Rev. Sci. Instrum., Vol. 74, No. 4, April 2003

FIG. 1. Schematic diagram of the thermal probe.
Principle of Method (cont’d)

• Temperature rise is taken from the TCR of the probe and change in resistance with change in power.

\[\Delta T = \frac{\Delta R}{R_0 \times TCR} \]

• Thermal resistance is calculated by change in temperature versus heating power.

\[R_{exp}^{th} = \frac{\Delta T}{P} \]
Principle of Method (cont’d)

• Thermal measurement typically done in non-contact mode.
 – Only air-sample conduction vs. solid-solid, liquid-solid, and air-solid
Principle of Method (cont’d)

- Examples of experimental data from a thermoelectric sample

\[Y = 1.58015 \times 10^{-5} + 4.06872 \times 10^{-6} X \]

Graphs:
- Thermal and deflection signal of non-contact to contact glass measurement.
- DC sample voltage (µV) vs. temperature rise (K).
- Linear fit for Seebeck voltage gold on glass.
Data Reduction Strategies

• Non-Contact Heat Transfer Models
 – Model heat transfer in air, far from sample to obtain convective coefficient
 – Model with well characterized pure (bulk) samples to obtain the thermal contact resistance and exchange radius
 – Model with sample to obtain sample thermal resistance, which gives thermal conductivity by $R_s = \frac{1}{4k_s b'}$, if sample has bulk-like thickness and sample temperature rise which gives true Seebeck coefficient.
Data Reduction Strategies (cont’d)

- Reference Curve Fitting:
 - Measure several samples with known thermal conductivity and obtain the thermal resistance as a function of distance for each.
 - Fit data; use fitting equation to obtain thermal conductivity of sample.
 - Only works for certain range of thermal conductivity values (0.1<k<10 W/mK).
Analysis of reference samples

- Reference samples analyzed:
 - Nb(k=53W/Km), Ti(k=25W/Km), Steel(k=16W/Km), Macor (k=1.4W/Km), k=0.65W/Km, k=0.49W/Km, PEDOT(k=0.37W/Km)
 - For these reference samples, observe the difference in behavior of the thermal resistance vs. distance between the probe and the surface

Zooming in on the lower thermal conductivity graphs.
Region III: The lower the thermal conductivity, the more similar the values of the thermal resistance are. Measurement of low thermal conductivities (below 2 W/mK) requires much more attentive detail (room temperature and humidity may significantly affect results).

Region II: Large variation from the low thermal conductivity region, and significantly higher thermal resistance than the high thermal conductivity region.

Region I: The higher the thermal conductivity of the sample, the trend in thermal resistance again becomes similar.
Observations (cont’d)

* Sharp slopes from Non contact to contact are related mainly with a straightforward heat flow from probe to sample.

* Soft slopes from Non contact to contact are related mainly with a spread heat flow from probe to sample.

Other factors that could have an effect: roughness of sample, angle of probe to surface of sample.
Observations (cont’d)

This agrees with work done by Lefevre, et. al;

* Sharp slopes from Non contact to contact are related mainly with a straightforward heat flow from probe to sample.

* Soft slopes from Non contact to contact are related mainly with spread heat flow from probe to sample.

Other factors that could have an effect: roughness of sample, angle of probe to surface of sample

\[
\begin{align*}
\frac{\Delta U^2}{U_i^2} &= \frac{3}{4} \frac{\lambda_s/G_{pt}}{G_{pt}/(\pi b + \lambda_s)}', \\
S = \frac{\partial \Delta U^2}{\partial \lambda_s} \propto \lambda_s^{-2}
\end{align*}
\]

\[
S_b = \frac{\partial \Delta U^2}{\partial b}
\]
Current Work

- Finite Elements Model of heat transfer between probe and surface developed to further explore these observations.
Current Work (cont’d)

• Thermal contact resistance and thermal exchange radius constant for low thermal conductivity values (0.1<k < 2 W/mK). Current work to investigate outside this range.

• Thermal contact resistance and thermal exchange radius taken from intersection of Macor (k=1.46 W/mK) and a bulk sample of k=0.49 W/mK.
Results – Bi$_{2-y}$Sb$_y$Te$_3$ thin-film samples

- Thermal Conductivity obtained this way for several thin film samples

<table>
<thead>
<tr>
<th>Type of Sample</th>
<th>Substrate</th>
<th>Name</th>
<th>Thermal Conductivity (W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi$_2$Te$_3$</td>
<td>SiO$_2$/100nm gold</td>
<td>OC110303A</td>
<td>1.20E+00</td>
</tr>
<tr>
<td>Bi(2-y)Sb$_y$Te$_3$</td>
<td>SiO$_2$/100nm gold</td>
<td>OC120814B</td>
<td>9.22E-01</td>
</tr>
<tr>
<td>Bi(2-y)Sb$_y$Te$_3$</td>
<td>glass</td>
<td>OC120814B</td>
<td>5.43E-01</td>
</tr>
</tbody>
</table>
Challenges:

• Probes are fragile
 • if probe is damaged during experiment or transportation, experiments must be started over

• Environmental conditions
 • Variations in room temperature; any vibrations or blowing air affect results

• Sample surface roughness
 • Poor contact makes repeatability difficult
Future Work:

• Develop rigorous probe handling and calibration protocol
• Build in remote digital thermometer and humidity monitor for room condition measurement into experimental automation
• Translate data reduction model to be incorporated into experimental automation
• Integrate nano-scale resolution commercial probes for finer local characterization/mapping
• Develop four probe thermal AFM tip for local electrical conductivity mapping
Acknowledgements

Dr. Theo Borca-Tasciuc, Dr. Diana Borca-Tasciuc, Jason Schomacker, RPI
Miguel Muñoz, Dr. Olga Caballero, Dr. Marisol Martin, IMM

Project Funded by:
National Science Foundation