Elastic Network Models

- Coarse-Grained at the residue level
- Residues are connected via elastic springs within a cutoff distance
- Interactions are governed by harmonic potentials

Two main models:

- **GNM** (Gaussian Network Model)
- **ANM** (Anisotropic Network Model)
Elastic Network Models

Given a protein structure
Elastic Network Models

Coarse grain at residue level

C_α (or C_β) atoms are selected as representative points
Elastic Network Models

Connect residues that are closer than a selected cutoff (r_c)
Elastic Network Models

Connect residues that are closer than a selected cutoff (r_c)
Anisotropic Network Model

Assuming harmonic potentials for each spring:

\[V_{i,j} = \frac{y}{2} \left(S_{i,j} - S_{i,j}^0 \right)^2 \]

Force constant matrix (Hessian) is the second derivative of the potential:

\[
H_{i,j} = \begin{bmatrix}
\frac{\partial^2 V}{\partial x_i \partial x_j} & \frac{\partial^2 V}{\partial x_i \partial y_j} & \frac{\partial^2 V}{\partial x_i \partial z_j} \\
\frac{\partial^2 V}{\partial y_i \partial x_j} & \frac{\partial^2 V}{\partial y_i \partial y_j} & \frac{\partial^2 V}{\partial y_i \partial z_j} \\
\frac{\partial^2 V}{\partial z_i \partial x_j} & \frac{\partial^2 V}{\partial z_i \partial y_j} & \frac{\partial^2 V}{\partial z_i \partial z_j}
\end{bmatrix}_{3x3}
\]

Which also can be written as:

\[
H_{3Nx3N} = B_{3NxM} K_{MxM} B^T_{Mx3N}
\]

\(B \) : Direction Cosine Matrix

\(K \) : Coefficient Matrix
3x3 super element of the inverse Hessian will give the fluctuation correlations:

$$H_{i,j}^{-1} = \Delta R_i \Delta R_j^T$$

The diagonal super element will correspond to the self-correlations.

Normal modes are given by eigenvalue decomposition:

$$H = U \Lambda U^T$$

Diagonals matrix Λ will give the frequencies
Columns of U will be the normal modes

In the presence of an external force, following equation holds:

\[H_{3Nx3N} \Delta R_{3Nx1} = \Delta F_{3Nx1} \]

\(\Delta R \) : Displacement vector
\(\Delta F \) : External force vector

Therefore, one can find the individual displacements for a given force

\[\Delta R = H^{-1} \Delta F \]
Visualizations by Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/
This material is partially based upon work supported by the National Science Foundation under Grant No. 1200270, 1003574 and 1050966.

We would like to thank Ali Rana Atilgan for useful discussions.