Studying the Effects of Concave and Confined Surfaces on Immobilized Proteins

Xi Qian
Graduate Student

Department of Materials Science and Engineering
Rensselaer Polytechnic Institute, Troy, New York, USA

Professor R. W. Siegel and Professor J. S. Dordick

NSF DMR-0642573
Outline

• Motivation
 ○ Surface curvature and nano-bio interactions

• Methodology
 ○ Preparation of nanomaterials
 ○ Probe the nano-bio interactions
 □ Protein uptake
 □ Immobilized protein activity

• Conclusion
Motivation: Nano-bio Interactions

Controllable by people

- Our task to understand and utilize

Nano Structure

- Morphology
 - Curvature
 - Shape
- Atomic structure
 - Surface Energy
- Chemistry
 - Substrate Materials
 - Surface Modification

Nano-bio Interaction

- Fundamental exploration

Topographical Chemical Effects

Protein:
- NANOMETER scale (usually <50 nm)
- Structure
- Stability
- Function
Nano-bio interactions

- Morphology effect: Surface curvature

SBP on CNT (●)/graphite (▲)
Nano-bio interactions

Negative surface curvature

- Negative surface curvature

Gold Nanocage (AuNG)

- Bio-compatible
- Electromagnetic properties
Au-Ag nanocage: a platform

$\text{HAuCl}_4 + \text{Ag} \rightarrow \text{Au} + 3\text{Ag}^{+} + 4\text{Cl}^{-}$
Nanocages (AuNG)
Nanomaterials Preparation

Surface ligand

- Poly(vinylpyrrolidone), PVP
 - Binding to cage via carbonyl group
 - Poor protein affinity

[11-Mercaptoundecanoic acid], MUA
- Binding to cage via sulfide bond
- pKa=5.7

X-ray Photoelecton Spectroscopy (XPS)

<table>
<thead>
<tr>
<th>XPS</th>
<th>Before</th>
<th>MUA 1 Day</th>
<th>MUA 2 Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>120</td>
<td>35</td>
<td>15</td>
</tr>
<tr>
<td>N</td>
<td>80</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>S</td>
<td>200</td>
<td>275</td>
<td>220</td>
</tr>
</tbody>
</table>
Lysozyme Uptake of AuNC and AuNG

AuNG-Lyz

- 100% exterior coverage
- $R^2=94\%$

AuNC-Lyz

- $R^2=84\%$
- 100% exterior coverage
Lysozyme Uptake of AuNG and AuNC: Summary

Protein uptake isotherm

- AuNG and AuNC behave similarly at low free protein concentrations
- AuNC saturates at high protein concentration, where AuNG doesn’t
- AuNG’s internal surfaces are available for protein uptake, and high protein concentration increased their accessibility
Enzymatic Activity Assays

- Cell wall assay (*Micrococcus lysodeikticus*)

- Fluorescence assay \(4\text{-Methylumbelliferyl } \beta\text{-d-N,N2,N22-\text{triaxety}} \) get into nanocages cleaved by lysozyme and has fluorescent effect \(\text{ex@355 nm, em@460 nm} \)
Activity Assays

![Graph showing relative activity of AuNG-Lyz and AuNC-Lyz in fluorescence and M. Lysodeikticus assays.](image)

- **Relative Activity (%)**
 - X-axis: Fluorescence Assay, M. Lysodeikticus Assay
 - Y-axis: Relative Activity

- **Graph Legend**
 - Blue: AuNG-Lyz
 - Red: AuNC-Lyz
The Two Substrates and Their Accessibilities
Investigating the Two Assays

Lyz sees AuNG & AuNC’s external surface similarly. For AuNG:
\[N(\text{int}) = 85\% \, N(\text{ext}) \]

For the fluorescence assay:
\[A_{\text{ext}} N_{\text{ext}} + A_{\text{int}} N_{\text{int}} = A_{\text{AuNG}} N_{\text{AuNG}} \]

A: Specific activity
N: Protein amount
The Activity of Lyz Inside AuNG

$$A_{ext}N_{ext} + A_{int}N_{int} = A_{AuNG}N_{AuNG}$$

![Graph showing relative activity of AuNG-Ext, AuNG-Int, and AuNC.](image-url)
Conclusions & Future work

• A significant amount of proteins can be internalized into AuNG
• And more importantly, remain substantial functional
• More precise characterizations of the immobilized proteins are being developed
Acknowledgement

• Professor Richard W. Siegel
• Professor Jonathan S. Dordick
• Dr Jennifer E. Gagner
• Alex Levenstein and Utthara Rameshbabu
• The Siegel research group
• The Dordick research group