Thermal Conductivity Measurements of Silicone-Zirconia Nanocomposite for LED Encapsulation

Richard Stephen Hutchison

Graduate Student

Department of Materials Science and Engineering

Rensselaer Polytechnic Institute, Troy, NY, USA

Advisor: Dr. Linda Schadler

Sponsors: Dr. Linda Schadler, RPI SMART Lighting ERC

The Problem

- Blue LEDs using phosphor to make white LEDs
 - Phosphor place remotely
 - Dispersed in encapsulant
 - Conformally on semiconductor die
- Phosphor can get hotter than LED
 - Stokes shift losses → heat
 - Less efficient energy conversion
 - Lower Quantum Efficiency of Phosphor

An Issue of Dispersion

• TEM image of ZrO₂ nanoparticles

Thermal Conductivity of ZrO₂ in Silicone

LED with phosphor and ZrO₂ nanocomposite

Thermal Conductivity Testing Method₂

Example output data plot from measurement₁. For this project ZrO₂ wt% would be plotted instead of graphene

Phosphor Quantum Efficiency variance with temperature₃

8753-8758.

^{1.} Yavari, F., Fard, H. R., Pashayi, K., Ra, M. A., Zamiri, A., Yu, Z., ... Koratkar, N. (2011). Enhanced Thermal Conductivity in a Nanostructured Phase Change Composite due to Low Concentration Graphene Additives,

^{2.} Keppens, A., Zong, Y., Ohno, Y., Deconinck, G., Hanselaer, P. (2010). DETERMINING PHOSPHORS 'EFFECTIVE QUANTUM EFFICIENCY FOR REMOTE PHOSPHOR TYPE LED MODULES, 1-4.

Modeled Thermal Conductivity

RULE OF MIXTURES

$$\kappa_{\rm c} = f_{\rm m} \kappa_{\rm m} + f_{\rm p} \kappa_{\rm p}$$

Model predicts a 120% increase in thermal conductivity at 10 volume% (40 wt%)

 $\kappa_c - 0.16 \rightarrow 0.366 \text{ W/mK}$

Measurement Methods

Thermal Conductivity Testing Method₂

$R = \Delta T/q = t/\kappa A$

R - Combined thermal resistance

 ΔT - Temperature difference across sample

q - Power

t - Thickness of sample

κ - Thermal conductivity of sample

A - Area of contact between thermocouple and sample (sample cross sectional area)

Next Steps

- Make and test 40 wt% ZrO₂ samples
 - Show how TC changes between base and loaded
 - If not, why?
- Test on LEDs
 - (with phosphor added)
 - Integrating sphere for intensity
- Aging testing
 - Run LEDs and check for degradation

Acknowledgements

- Dr. Linda Schadler
- SMART Lighting ERC
- Ying Li
- Dr. Borca-Tasciuc & Hafez Fard
- Rensselaer Nanotechnology Center

